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Abstract and Keywords
This chapter studies the celebrated Phelps–Koopmans theorem in environments 
with non-convex production technologies. The chapter argues that a robust 
failure of the theorem occurs in such environments. Specifically, it is proved that 
the Phelps–Koopmans theorem must fail whenever the net output of the 
aggregate production function f(x), given by f(x) – x, is increasing in any region 
between the golden rule and the maximum sustainable capital stock.
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A planned path of consumptions is efficient if there is no other feasible planned 
path that generates just as much consumption at every date, with strictly more 
consumption at some date. This innocuous-looking definition contains one of the 
most interesting problems in classical growth theory: what criteria must one 
invoke to determine the efficiency of a planned path?

It isn’t surprising that such a question was born in the early second half of the 
twentieth century. With the end of the Second World War, the newly-won 
independence of colonial nations, and the rising influence of socialist politics in 
Europe and elsewhere, planners and academics placed growing reliance on 
planned growth: on the deliberate allocation of resources, both across sectors 
and over time, to achieve economic development.
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Of course, this relatively narrow definition of efficiency comes nowhere close to 
addressing the manifold complexities of such a  (p.44) development. But it is a 

necessary requirement, and it is a fundamental consideration. It is also a subtle 
criterion, as the work of Edmond Malinvaud, Edmund Phelps, Tjalling 
Koopmans, David Cass, and others was to reveal. When time (and the number of 
commodities) is finite, efficiency is no more involved than an old-fashioned 
maximization problem; indeed, in the aggregative growth model with a single 
malleable commodity, efficiency is identical to the simple absence of waste. 
However, when the time-horizon is open-ended, and therefore infinite, new 
considerations appear. It is entirely possible for a path to not involve any waste 
at any particular point in time, and yet be inefficient.

It is in this context that the so-called Phelps–Koopmans theorem provides a 
celebrated necessary condition for efficiency. As a historical note, Phelps (1962)
actually conjectured the necessity of the condition, while Koopmans proved that 
conjecture; the resulting theorem appears in Phelps (1965). The work merited a 
Nobel citation. In awarding the 2006 Prize to Edmund Phelps, the Royal Swedish 
Academy of Sciences observed that:

Phelps…showed that all generations may, under certain conditions, gain 
from changes in the savings rate.

Briefly, the Phelps–Koopmans theorem lays the blame for inefficiency at the 
doorstep of capital over-accumulation. The extreme cases are easy enough: if all
capital is forever accumulated, then the outcome must perforce be inefficient, 
and if all capital is instantly consumed in the first period, the outcome must be 
efficient (after all, all other paths must yield lower consumption in the first 
period).1 But the theorem throws light on the intermediate cases as well. Define 
a golden rule capital stock to be one at which output net of capital is 
maximized.2 The Phelps–Koopmans theorem states that: (p.45)

If the capital stock of a path is above and bounded away from the golden 
rule stock, from a certain time onward, then the path is inefficient.

Later characterizations that seek a complete description of inefficiency (not just 
a sufficient condition), such as the work of Cass (1972), rely fundamentally on 
the Phelps–Koopmans insight. It is not our intention to survey the sizeable 
literature that works towards a complete characterization of efficiency. Rather 
we seek to investigate the original theorem in a more general context, one that 
allows for non-convexity of the production technology. The motivation behind 
such an investigation should be obvious. The vast bulk of literature assumes 
diminishing returns in production. This flies squarely in the face of empirical 
reality, in which minimum scales of operation (and the resulting non-convexities) 
are the rule rather than the exception. It is of some interest that this case has 
received little attention as far as the Phelps–Koopmans theorem is concerned. It 
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is of even greater interest that without substantial qualification, the theorem 
actually fails to extend to this context.

To begin with, the setting is still the same: non-convexity is no impediment to the 
existence of a golden rule stock provided that suitable end-point conditions hold. 
Indeed, there may now be several such stocks; refer to the smallest of them as 
the minimal golden rule. Our recent paper (Mitra and Ray 2012) breaks up the 
Phelps–Koopmans assertion into three progressively stronger formats:

1. Every stationary path with capital stock in excess of the minimal 
golden rule is inefficient.
2. If a (possibly non-stationary) path converges to a limit capital stock in 
excess of the minimal golden rule, then it is inefficient.
3. If a (possibly non-stationary) path lies above, and bounded away from 
the minimal golden rule from a certain time onwards, then it is 
inefficient.

Obviously, version 3 nests version 2, which in turn nests version 1.

It is very easy to see that the weakest version, 1, of the Phelps–Koopmans 
theorem must be true. But version 2 of the theorem is false. In Mitra and Ray 
(2012), we present an example of an efficient (p.46) path that converges to a 
limit stock that exceeds the minimal golden rule. The circumstances under 
which version 2 is true is completely characterized in that paper—in terms of the 
curvature of the production function at the golden rules.

In short, while a variant of the Phelps–Koopmans theorem does hold when 
technology is non-convex, the ‘over-accumulation of capital’, as defined by 
Phelps, need not always imply inefficiency.

A corollary of our characterization is that version 2 is indeed true provided that 
the golden rule stock is unique. It turns out; however, that version 3 of the 
theorem is not true even if the golden rule is unique. Proposition 3 in Mitra and 
Ray (2012) provides a stringent condition on the production function under 
which version 3 is guaranteed to fail (see condition F.4 in that paper). However, 
the stringency of the condition precludes its necessity. Our paper is silent on the 
possibility of completely characterizing an economic environment for which 
version 3 stands or falls. Indeed, we ended our introduction to our paper thus:

An interesting research question is to describe conditions under which 
version III is valid. We suspect that such conditions will involve strong 
restrictions on the production technology. Whether those conditions 
usefully expand the subset of convex technologies remains an open 
question.
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The goal of the present chapter is to address this question. Under some mild 
restrictions on the allowable family of production technologies, we provide a 
complete characterization of what one might call the Phelps–Koopmans property, 
one that allows for all non-stationary paths, as in version 3. The property may be 
stated as:

A path is inefficient if its capital stock sequence lies above and bounded 
away from the minimal golden rule capital stock from a certain time 
onwards.

We prove that the Phelps–Koopmans theorem must fail whenever the net output 
of the aggregate production function f(x), given by f(x) – x, is increasing in any 
region between the golden rule and the maximum sustainable capital stock. As a 
corollary of our result, suppose that the production function f(x) is continuously 
differentiable, with a strictly positive derivative and admits a unique  (p.47) 

golden rule. Then if f is concave, the Phelps–Koopmans assertion holds, but if we 
perturb the function ever so slightly to the right of the golden rule (but below 
the maximum sustainable stock), so that it now admits a region over which f′(x) 
> 1, the Phelps–Koopmans property must fail. We return to this discussion after 
the statement of the main theorem.

Preliminaries
Consider an aggregative model of economic growth. At every date, capital xt
produces output f(xt), where f : ℝ+ → ℝ+ is the production function. We assume 
throughout that:

[F] The production function f : ℝ+ → ℝ+ is continuous and increasing on ℝ+
with f(0) = 0, and there is B ∈ (0, ∞) such that f(x) > x for all x ∈ (0, B) and 

f(x) < x for all x > B. Further, the left hand derivative of f, denoted by f–, 
exists and is positive for all x > 0.

We can think of B as the maximum sustainable stock.

Notice that [F] includes the standard convex technology, as well as technologies 
in which there are one or more regions of non-convexity. The somewhat 
awkward assumption that the left-hand derivative of f is always well-defined (but 
not necessarily the full derivative) allows us to accommodate cases in which f is 
the upper envelope of two or more neoclassical production functions, as 
described in Mitra and Ray (2012) and in the discussion later in this chapter.3

A programme from κ > 0 is a sequence of capital stocks x = {xt} with:

for all t ≥ 0. Let ct + 1 = f (xt) – xt + 1 be the associated consumption programme. With 
no real loss of generality, we presume that κ ∈ [0, B].
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A programme x′ from κ dominates a programme x from κ if the associated 
consumption sequences satisfy:

 (p.48) for every t, with strict inequality for some t. A programme x from κ is 

inefficient if there is a programme x′ from κ which dominates it. It is efficient if it is not 
inefficient.
Define s(x) ≡ f(x) − x for all x ≥ 0. Under [F], s is continuous on [0, B] with s(0) = 

s(B) = 0 ≥ s(x) for all x ≥ B, so there is x* ∈ (0, B) such that:

Call x* a golden rule stock, or simply a golden rule. Clearly, the set of golden 
rules lies in (0, B) and is compact, so there is a smallest or minimal golden rule; 
denote it by k.

The Main Theorem
THEOREM 1 The Phelps–Koopmans property holds if and only if:

(3.1)

where k is the minimal golden rule.
Proof [If] Suppose {xt} is a programme from κ ≥ 0, and there is α > 0 and T ∈ ℕ 
such that xt ≥ k + α for all t ≥ T. Define  by  for t = 0,…, T − 1, and x′

(t) = x(t) for t ≥ T. Then  for all t ∈ {0,…, T − 1}, and  for all t ≥ 

T. Further,  for t ∈ {1,…, T − 1} if any, and . For t ≥ T, we 

have:

by virtue of the fact that (3.1) holds. Thus, {xt} is inefficient.4

 (p.49) [Only If] Suppose that (3.1) is violated. Then, there exist numbers b and 

b′ such that b′ > b > k and s(b′) > s(b).5 Furthermore, there is w ∈ (b, b′) such 
that η ≡ f–(w) exceeds 1.6 Since, η is the left-hand derivative of f at w, we can find 
0 < e < w – b < w – k such that whenever x ∈ (w – e, w), we have:

In particular, for all x ∈ (w – e, w):
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so that:
(3.2)

Next, pick z ∈ (k, w – e), with z sufficiently close to k, so that if we define y ≡ z – 

e, then:

(3.3)

To see that this can be done, suppose by way of contradiction that such a 
construction is impossible. Then there exists a sequence zn ↓ k such that for 
every n, there is xn ≤ zn – e with f(xn) – xn ≥ f(zn) – zn. By passing to the limit (and 
taking a subsequence of {xn} if necessary), we contradict the fact that k is the 
minimal golden rule.

To complete the preliminaries, define:

 (p.50) and note that δ must be strictly positive. Choose a positive integer M such that:
(3.4)

Now define a cyclical programme x as follows. The programme starts at z and 
stays there for M periods, where M is defined by (3.4). The programme then 
steadily accumulates to reach w (to be concrete, think of this as pure 
accumulation with some adjustment in consumption in at most one period so as 
to hit w exactly). Say this takes N periods, thereby passing through (N + 1) 
distinct values of capital.

To describe the remainder of the programme, we need some more notation. 
Denote the distinct values of the stock by (z0, z1,…, zN), with z0 = z, and zN = w. 
The left-hand derivative of f exists and is positive at each of these points, and so 

μ ≡ min{f–(z0),…, f–(zN)} is strictly positive. For each j ∈ {0, 1,…, N}, there is 0 <
θj < z such that for all x ∈ (zj – θj, zj):

so that for all x ∈ (zj – θj, zj):
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and therefore:

Define θ ≡ min{θ0,…, θN}. Then, for all j ∈ {0, 1,…, N}:

(3.5)

Consider the function L(x) ≡ f(x) – f(x – θ) for all x ∈ [z, B]. Then L(x) is a positive 
continuous function on [z, B], and has a minimum  (p.51) value, which we call 
. Define , and ℓ = min {β,(μ/2)}. Note that ℓ > 0. We now claim that for 
each j ∈ {0, 1,…, N},

(3.6)

For x = zj, this is trivially true. So, consider x ∈ [0, zj). Either (i) x ∈ (zj – θ, zj), or 
(ii) 0 ≤ x ≤ zj – θ. In case (i), using (3.5) we have [f(zj) – f(x)] ≥ (μ/2)(zj – x) ≥ ℓ (zj –
x). In case (ii), we have:

This establishes our claim (3.6).

Choose a positive integer Q so that:

(3.7)

Because h > 1 and ℓ > 0, Q can always be chosen to satisfy (3.7).

We now complete the description of the programme. After accumulating to w, it 
stays there for Q periods, and then returns to z, whereupon the cycle is 
indefinitely repeated.

We claim that x is efficient.

If not, there is a dominating programme x′. Let t(i) be the date at which a fresh 
round i starts. We claim that there is i such that .

To establish the claim, notice that at every date t:

so that:
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(3.8)

Since , we have  for all t ≥ 0 by using (3.8).

 (p.52) Now, during the first M + N periods of any round, we know from (3.6)
that:

so that combining this information with (3.8), we see that during the first M + N
periods of any round:
(3.9)

Let us refer to the phase, in which the stock is kept stationary at w in the 
original programme, as the ‘upper phase’. There are two possibilities to 
consider: (i) there is some date t in the upper phase, in some round, for which 

, and (ii)  at every date in the upper phase for every round. 

In case (i), using (3.8) again:

because f (x) – x is increasing over the range [w – e, w]. Thus, , and this 

step can be repeated for all subsequent dates of the upper phase of that round to 
obtain  where τ is the first period of the next round. This establishes our 
claim in case (i).
In case (ii), using (3.8) yet again, along with (3.2):

(3.10)

for every date t of the upper phase of every round. Combining (3.9) and (3.10), we must 
conclude that:

where λ > 1; see (3.7). So εi expands geometrically across rounds once it turns 
positive. But it must turn positive at some round, because x′ is a dominating 
programme.
So in this case too, the claim is proved.

Consider any round i, then, at which εi ≥ e. For the next M periods, we have 

 by induction, using (3.3), and moreover: (p.53)
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But, this means that by the end of M more periods, we must have 

, a contradiction. So no dominating programme can 

exist, and x must be efficient.

Discussion
We can illustrate the main theorem as follows. Call a production function F 
neoclassical if it satisfies condition [F] and in addition:

[C] F is strictly concave on ℝ+ and twice continuously differentiable on ℝ+

+, with F″(x) < 0 for all x > 0.

Consider a production function f that can be written as the point-wise maximum 
of two neoclassical functions; call them h and g:

Suppose that first h, then g, occupies the envelope, that is, there exists u such 
that:

Suppose, moreover, that:

Then f satisfies [F].

Denote the (unique) golden rule of h by kh, and the golden rule of g by kg. 
Assume that these two values lie on either side of u:

 (p.54) Clearly, the technology set defined by f is non-convex (note that f is not, 
in general, differentiable). Observe that the minimal golden rule of f is kh if:

(3.11)

with kh the unique golden rule of f if and only if strict inequality holds in (3.11). 
Similarly, the minimal (and only) golden rule of f is kg if (3.11) fails. In the latter case, 
since f is concave on [kg, B], the standard Phelps–Koopmans theory applies to paths 
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Figure 3.1  An Illustration of Theorem 1

which are above and bounded away from the golden rule stock kg. So the Phelps–
Koopmans property clearly holds in this case.
Our main theorem implies, however, that this is the only situation in which the 
Phelps–Koopmans theorem is valid. As soon as (3.11) holds, the Phelps–
Koopmans theorem fails, no matter how briefly g occupies the outer envelope 
that comprises f. This is a remarkable fact that requires some explanation. 
Figure 3.1 illustrates a situation in which g occupies the frontier for a relatively 
short stretch. The proof of the theorem constructs a cycle that starts from a 
point z close to the minimal golden rule kh, stays there for M periods, and then 
goes up into the zone where g occupies the envelope, but to the left of kg; see the 
point w in Figure 3.1. The programme stays there for Q periods, and then drops 
back to z again, whereupon the cycle starts all over again.

A comparison programme that dominates this cycle must ultimately have lower 
stocks relative to the cycle at every date. If the cycle reaches its peak in a zone 
where h still occupies the envelope, this is not a problem; indeed, there is some 
surplus to be gained by lowering stocks by a tiny amount. However, if the peak is 
reached when g occupies the envelope, control over the comparison stocks is 
weaker: in the region in which w is being repeated for Q periods, the comparison 
programme must steadily drift further away from w, because the surplus s(x) 
falls locally to the left of w. This drift magnifies over rounds until no matter how 
alike the comparison programme was to start with, the difference in the stocks 
is pronounced. At this point, the comparison programme drops below a point 
such as y to the left of the golden rule kh, and generates lower surplus than z. 
Once here, though, it cannot recover. The M subsequent  (p.55)

repetitions of z force the 
comparison programme to fall 
ever lower in stocks, until 
feasibility is violated. So the cycle 
is efficient. It is in this way that a 
tiny ‘intrusion’ of the second 
neoclassical technique g destroys 
the Phelps–Koopmans property.
* * *

This paper studies the well-
known Phelps–Koopmans 
theorem in an environment with 
a non-convex production 
technology. We argue that in 
such a setting, the Phelps–
Koopmans result generally fails 
to hold, and that this failure is 
quite robust. Specifically, we prove that the theorem fails whenever the net 
output of the aggregate production function f(x), given by f(x) – x, is increasing in
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any region between the golden rule and the maximum sustainable capital stock. 
That is, in such cases, it is always possible to find an efficient program in which 
capital stocks ultimately lie above (and stay bounded away from) the golden 
rule. Thus the ‘overaccumulation of capital’, as captured by  (p.56) a positive 
excess of capital over the golden rule, is no longer related to efficiency, once the 
convexity of the production technology is dispensed with.
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Notes:

(1) The latter example underscores the fact that efficiency is a weak 
requirement: stronger optimality criteria such as the maximization of time-
separable utility would generally rule out such paths. See Ray (2010) for a 
discussion of this case.

(2) With a standard production function f(k) satisfying the usual curvature and 
end-point restrictions, such a stock is characterized by the condition f′(k) = 1.

(3) We conjecture that the differentiability restriction on f can be dropped at no 
cost.

(4) The ‘if’ part is standard, and is inspired by the original proof of the Phelps–
Koopmans theorem, as suggested by Koopmans. We include it here for a self-
contained treatment.

(5) That b > k is guaranteed by virtue of the fact that k is a golden rule.
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(6) Suppose, on the contrary, that f–(x) ≤ 1 for all x ∈ (b, b′). Define S(x) = –s(x) 
for all x ∈ I ≡ [b, b′]. Then, S is continuous on I, and its left hand derivative is 
non-negative for all x ∈ (b, b′). By Proposition 2 of Royden (1988: 99), we must 
then have S(b′) ≥ S(b), so that s(b′) ≤ s(b), a contradiction.


